Friday, September 20, 2019
Comparison on Computation Cost of the Cloud
Comparison on Computation Cost of the Cloud In this chapter, we list the comparison on computation cost of the cloud for file upload between â⬠¦ and our scheme. Computational Cost Data access issues in the field of the cloud computing provide a good measurement-based performance as mentioned along this research, and hence, the security features can be improved using the new proposed model as well as a suitable computational cost. However, the proposed protocol provides these advantages and evaluates the performance based on computational cost and security requirements. The performance of our proposed scheme is evaluated using the existing experimental in [33] [34] [35] for a variety of cryptographic operations using MIRACLE [36] in PIV 3 GHZ processor with Windows XP operating system and 512 MB memory. From [33] [34] [35] the relative running time for the operations we adopted in our proposed scheme and we define some terms for the running time calculations: Tp= Pairing operation= 20.01 ms Th= Hash function= 3.04 ms Tpm= Pairing-based scalar multiplication= 6.38 ms Tec= ECC-based scalar multiplication= 0.83 ms Other operations: omitted The following tables illustrates the performance efficiency based on running time which is focus on user side including data owner: Table 1: Computational Cost-based Performance Efficiency Phasesââ â Operations Running time (ms) Key Generation Tec+2Th 6.91 Upload Tp+Th 23.05 Download (Transformation Key) Tpm 6.38 Total Tp+ Tpm+Tec+3Th 36.34 The following table shows comparison between [37] [38] and our scheme in the major process which is file upload/download, with file in any size (not affected) and for one user: Table 2: Comparison of Computational Cost-based Performance Efficiency Referencesââ â Ref [37] Ref [38] Our scheme Upload 872.09 33.24 23.05 Download 400.21 39.25 6.38 Total 1272.30 72.49 29.43 From the above tables we clearly can observe that our proposed model is more efficient and has low running time indeed. The following figure can simplify this comparison: Figure 1: Comparison of performance efficiency-based running time Security requirement In the security aspects of our proposed model, we can notice that this model can achieve AC, FR, DC, IG, security requirements. Furthermore, this model not only provide a cost-based efficient scheme, but also provide a high secure and robust model against attacks such as Anti-collusion, Replay, MITM, and DoS attacks as follows: Anti-collusion attackà à Some unauthorized users or members whose attributes do not satisfy the access policy, they may also try to access the data by colluding together with other users or even the service provider to compromise some data owners privacy. Our scheme is considered it to be secure against this attack due when a user is revoked, the group manager updates the revocation list (RL) stored in the cloud with a new. In addition, the group manager adds a time stamp to the data files and signs, to make sure that the cloud updates the data files. à New DF = sign ts (à °Ã ââ¬ËÃ
¸Ã °Ã ââ¬ËÃÅ" =(à ¢Ã
¸Ã ¨Ã °Ã ââ¬Ëà ¢,à °Ã ââ¬ËÃâ(à °Ã ââ¬Ëà ¢)à ¢Ã
¸Ã © âËâ¬Ã °Ã ââ¬Ëà ¢-âËËà °Ã ââ¬Ëâ⬠¦Ã °Ã à à ¿), group id, CT ) Replay attack Replay attacks are network attacks in which the attacker spies the conversation between the sender and receiver and takes the authenticated information e.g. sharing key and then contact to the receiver with that key. Moreover, our scheme is considered it to be secure against this attack due to temporary session by using timestamp for encrypted data. Man-in-the-Middle Attack (MITM) Man-in-the-middle attack has become quite popular in the SaaS environment. Here the attacker intercepts the communication channel established between legitimate users and modifies the communication between client and server without their knowledge. Moreover, our scheme is considered it to be secure against this attack due to encrypted identities and the hash function used in the term of key generation: Denial of Service Attack (DOS): Most of the serious attacks in cloud computing.à Inà Denialà ofà serviceà attackà anà attackerà preventà legitimateà usersà ofà serviceà fromà usingà the desired resources by flood a network or by consuming bandwidth .So authentication is need to distinguish legitimatedà clientsà fromà maliciousà clients,à whichà canà beà performedà throughà strongà cryptographic verification. Moreover, our scheme is considered it to be secure against this attack due to the client creates a unique HMAC, or hash, per request to the cloud by combing the request data and hashing that data, along with his id and sending it as part of a request. The cloud receives the request and regenerates its own unique HMAC. The cloud compares the two HMACs, and, if theyre equal, the client is trusted and the request is executed. Request | | tk+ H(id) à For convince, we define the following terms: AC: Access control FR: Flexible revocation DC: Data confidentiality IG: Integrity Sym: Symmetric Algorithm CT: Computational cost TS: Timestamp ODBE: RBE: Role based encryption LGS: leveraging group signature DBE: dynamic broadcast encryption Table 3 Security requirement comparison Referencesââ â Ref [ 38] Ref [39] Ref [40] Our scheme Techniques Sym DBE RBE ABE Features AC, DC AC, DC AC AC, FR, DC, IG Comments High CT, No TS High CT, No TS High CT, No TS Low CT,TS Anti-collusion attack âËÅ¡ Replay attack âËÅ¡ MITM attack âËÅ¡ DoS attack âËÅ¡ âËÅ¡Ã Ã means the scheme can achieve the corresponding goal. In general and from the above comparisons, our scheme can achieve data confidentiality, secureà à access control, integrity andà à flexible revocation.à For clearly seeing the advantages of security of our proposed scheme, as explain in table 3, we list a table compared with ref [38], ref [39] and ref [40].
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.